scsr-calc
This script computes H, G, A1 and A2 electron dynamics matrices
Examples:
Run A2 & G with 200 steps:
scsr-calc A2 G -p steps=200
Run A2 & G with multiprocessing, with 200 steps and lc = 4 and Kx = (0,1,2,3):
scsr-calc A2 G -p lc=4 steps=200 -x -v Kx=0:3
Run A2 & G with multiprocessing, with 200 steps for 6 equally-spaced w. w values from 0-3:
scsr-calc A2 G -p steps=200 -x -v w=0:3:6
Run A2 & G with 100 steps, then write to file:
scsr-calc A2 G -p steps=100 -w
Run A2 & G with 100 steps, then write to file called “A2_G_100_steps.pkl”
scsr-calc A2 G -p steps=100 -w -o A2_G_100_steps.pkl
Output: Files are written as python pickles. Pickles can be read from a new python session using:
import pickle
result = pickle.load(open('output.pkl', 'rb'))
Or, more conveniently, using the scsr.results.load_results function,
which returns a results object corresponding to the type of pickle. It
expects a list of 1 (or more, if chunking is used) pickle path(s), as it
also deals with compiling results from chunked scsr-calc commands:
from scsr.results import load_results
results = load_results(['out.1.pkl', 'out.2.pkl'])
Parameters:
tau, w, L, Nf_m, Vf, Kx, Ln, Ky, P, wp, lc
steps: The number of discrete steps in theta/phi axes. (The theta by phi grid is steps^2).theta_max: The maximum value of theta.phi_max: The maximum value of phi.max_tile_size: The max size of the tile of a m by n function matrix to compute at once. Default is (2,2), but you may get significant performance boosts if you increase this - especially in GPU mode.mp_batch_size: The number of function arrays to process before sending them to the main thread (No need to adjust).
usage: scsr-calc [-h] [-p P=V [P=V ...]]
[-v P=V1,V2,..,VN [P=V1,V2,..,VN ...]] [-d {64,128,256}] [-x]
[-g] [-G GPU_IDS [GPU_IDS ...] | -A] [-m SUBPROCESS_COUNT]
[-w] [-E] [-o OUTPUT] [-f] [-u seconds] [-C CHUNKS]
[-P CHUNK_PARAMETER] [-I CHUNK_ID]
[{H,G,A1,A2} ...]
Inputs
- functions
Possible choices: H, G, A1, A2
Functions.
Default: {’H’, ‘G’, ‘A1’, ‘A2’}
- -p, --params
Parameters to override. space-separated list of ‘[PARAM]=[VALUE]’ pairs.
- -v, --variable-params
Variable parameters to override. Space-separated list of ‘[PARAM]=[VALUE1],[…],[VALUEN]’ items. Values can either be a single value or a range of values. Ranges of consecutive whole numbers can be specified as ‘A:B’, where A and B are integers. Ranges of floating point numbers can be specified as ‘[VALUEA]:[VALUEB]:[STEPS]’, where steps is the number of steps
- -d, --dtype
Possible choices: 64, 128, 256
Complex data type to use for calculations.
Default: “128”
Processing
- -x, --use-subprocesses
Use subprocesses.
Default: False
- -g, --gpu
Use the GPU. Requires a CUDA-enabled GPU and CuPy to be installed.
Default: False
- -G, --gpu-ids
Id(s) of GPUs)s to use. Default’s to the first available cuda-capable gpu. Implies –gpu.
- -A, --all-gpus
Use all available GPUs. Implies –gpu.
- -m, --subprocess-count
Use this many subprocesses. Defaults to the processor core count, unless –gpu is specified, in which case it defaults to 1 per GPU in use.
Output
- -w, --write
Write a pickle file with the resultant array.
Default: False
- -E, --epsilon-only
Only include epsilon values in the results.
Default: False
- -o, --output
Output pickle file path. Defaults to ‘results/output.pkl’.
- -f, --force
Overwrite pickle file path it exists. Will generate a unique name by default.
Default: False
- -u, --min-update-interval
Min interval (seconds) between progress bar updates.
Default: 0.05
Chunking
- -C, --chunks
Number of chunks.
Default: 1
- -P, --chunk-parameter
Parameter on which to chunk. Defaults to variable parameter with the most values.
- -I, --chunk-id
Chunk id. (from 1 to
--chunks)